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SUMMARY

A direct numerical simulation of low Reynolds number turbulent flows in an open-channel with sidewalls
is presented. Mean flow and turbulence structures are described and compared with both simulated and
measured data available from the literature. The simulation results show that secondary flows are generated
near the walls and free surface. In particular, at the upper corner of the channel, a small vortex called
inner secondary flows is simulated. The results show that the inner secondary flows, counter-rotating to
outer secondary flows away from the sidewall, increase the shear velocity near the free surface. The
secondary flows observed in turbulent open-channel flows are related to the production of Reynolds shear
stress. A quadrant analysis shows that sweeps and ejections are dominant in the regions where secondary
flows rush in toward the wall and eject from the wall, respectively. A conditional quadrant analysis also
reveals that the production of Reynolds shear stress and the secondary flow patterns are determined by
the directional tendency of the dominant coherent structures. Copyright q 2009 John Wiley & Sons, Ltd.

Received 16 June 2008; Revised 25 November 2008; Accepted 6 February 2009

KEY WORDS: direct numerical simulation; open-channel flows; sidewall; secondary flows; quadrant
analysis; coherent structures

INTRODUCTION

Turbulent open-channel flows without sidewalls have only one inhomogeneous direction due to
the free surface and the bottom. However, the presence of the sidewall increases the number of
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inhomogeneous directions, which further complicates the flow structure. Open-channel flows with
sidewalls are also characterized by mean secondary flows that are created by turbulence. These
secondary flows are Prandtl’s secondary flows of the second kind. Although the secondary flows
are of about 2–5% of the bulk streamwise velocity in magnitude, they affect mean flows, turbulent
structures, and the transport of passive scalars such as solute contaminants, heat, and suspended
sediment [1]. Since secondary flows in open-channel flows are important in engineering practices,
laboratory studies or numerical simulations have been performed [2–7].

A primary tool for simulating open-channel flows involves a numerical analysis of the
Reynolds-averaged Navier–Stokes (RANS) equations. Since the RANS equations do not form a
closed set, a numerical solution of RANS equations requires the introduction of approximations,
namely turbulence models such as the two equation model, the algebraic stress model, and
the Reynolds stress model. In addition, a solution in which the RANS model is used cannot
provide detailed information on the flow structure on a small scale. Recent advances in computer
technologies have led to amazing developments in the area of computational fluid dynamics.
Accordingly, in order to overcome the problems of the RANS approach, the Navier–Stokes
equations without turbulence closure are solved directly. This is referred to as a direct numerical
simulation (DNS). Since a DNS resolves all motions contained in the flow, it is recognized to
be the most precise simulation tool for the analysis of turbulence structures and wall effects [8].
Moreover, DNS data on instantaneous three-dimensional velocity and pressure fields provide
information that complements data collected on experimental studies on turbulent flows [9].
However, the computer requirements increase so rapidly with Reynolds number (approximately
as Re3) that the applicability of this approach is limited to flows with low Reynolds numbers.
Therefore, it is almost impossible, even with today’s computers, to simulate flows at high
Reynolds numbers such as stream flows, using DNS. Nevertheless, the mean flow and statistics
of energy-containing motions exhibit only weak Reynolds-number dependences [10], and the
mechanisms driving corner secondary flows at disparate Reynolds numbers are similar [11]. For
this reason, many DNS studies of turbulent flows at low Reynolds numbers have recently been
performed [9, 11–16].

Although, at the present time, DNS of turbulent flows in an open-channel with sidewalls are
not available, a literature survey reveals that several studies by large eddy simulation (LES), a
compromise between the RANS model and DNS, have been performed. Shi et al. [6] performed
LES of turbulent flows in a straight open-channel with sidewalls, and provided mean flow and
turbulence structures. Shi et al. [6] concluded that the simulated results were in good agree-
ment with previously measured data. Recently, Broglia et al. [17] performed LES of turbulent
flows at bulk Reynolds numbers (based on the bulk streamwise velocity and the flow depth)
of 5571, 9844, and 17 130 in an open-channel with sidewalls. They observed both outer and
inner secondary flows near the free surface. Broglia et al. [17] also described in detail the
mean flow properties and turbulence structures near the juncture of the free surface and the
sidewall.

In the present study, a DNS of turbulent flows with low Reynolds numbers in an open-channel
with sidewalls were performed. The flow at a bulk Reynolds number of 4160 in a channel with a
width to depth ratio of unity is simulated. Using DNS data, the turbulence statistics of mean flow
and turbulence structures are provided and are compared with previously reported numerical and
experimental data. The impacts of secondary flows on turbulence statistics are discussed. In order
to verify the mechanism of the generation of secondary flows and the production of Reynolds
shear stress, a quadrant analysis was performed.
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NUMERICAL SIMULATIONS

Numerical methods

The three-dimensional Navier–Stokes equations for unsteady incompressible flow can be presented
in the following non-dimensional form:

�ui
�xi

=0 (1)

�ui
�t

+ �
�x j

ui u j =− �p
�xi

+ 1

Re

�
�x j

�ui
�x j

+ 1

Fr2
S0�1i (i, j =1,2,3) (2)

where xi are the Cartesian coordinates, ui are the velocity components in the xi -direction, p is the
pressure, S0 is the bottom slope, �i j is Kronecker’s delta, Re is the Reynolds number (=U0H/�),
and Fr is the Froude number (=U0/

√
gH ) (here, H =flow depth, U0=characteristic velocity,

�=kinematic viscosity of fluids, and g=gravitational acceleration).
A fully implicit velocity decoupling procedure reported by Kim et al. [18] is used to solve the

governing equations. This decoupling procedure is an efficient fractional step method for computing
velocity components without iterations. A multi-grid method with a fast Fourier transform in a
periodic streamwise direction is employed in order to accelerate the solution convergence for the
Poisson equation. A detailed procedure for the computational algorithm is described below.

The second-order central finite difference scheme and the second-order Crank–Nicholson scheme
are used to discretize the governing equations in space and time, respectively, after linearizing
the nonlinear convective terms by the second-order procedure [19]. The discretized governing
equations at time step n+1 are given by

Dun+1=0+cbc (3)

un+1−un

�t
+N (un+1)=−Gpn+1/2+
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2Re

)
+sour+mbc (4)

where L is the discrete Laplacian operator, N is the discrete convective operator, G is the discrete
gradient operator, D is the discrete divergence operator, �t is the time increment, superscript n is
the time step, and sour(= S0�1i/Fr2) represents the source term. The boundary conditions for the
velocity components are imposed on cbc and mbc, respectively. The matrix form of Equations (3)
and (4) is factored into the block LU decomposition by Perot [20] as(
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where A=1/�t[I +�t (N−L/2Re)], M=N−L/2Re, I =unit matrix, r=un/�t−Gpn−1/2+
Lun/2Re+sour, and �p= pn+1/2− pn−1/2. By the approximation factorization by Dukowicz and
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Dvinsky [21] Equation (5) is expressed as

Au∗ =r+mbc (7)

�tDG�p=Du∗−cbc (8)

un+1=u∗−�tG�p (9)

pn+1/2= pn−1/2+�p (10)

where u∗ is the intermediate velocity. Equations (7)–(10) show that the velocity–pressure decou-
pling is attained.

As stated earlier, the approximation factorization is also extended to the velocity components
(u∗) in Equation (7) by employing �u∗(=u∗−un). Hence, Equation (7) is expressed as

A�u∗ =−Aun+1+r+mbc≡R (11)

which can be rewritten in the matrix form as
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Using the approximation factorization of the matrix form in Equation (12), the intermediate velocity
components (�u∗

1, �u∗
2, and �u∗

3) are decoupled, i.e.
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where the intermediate velocities are computed separately by introducing new intermediate vari-
ables (�u∗∗) through the following steps:

1
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In the above equations, Mii can be split into three parts, namely M1
i i , M2

i i , and M3
i i , which

contain the derivative of x1, x2, and x3, respectively. Therefore, for example, Equation (14) can
be rewritten as

1

�t
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11+M2
11+M3

11)}�u∗∗
1 = R1 (19)
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Now, Equation (19) can be approximated to

1

�t
(I +�tM1

11)(I +�tM2
11)(I +�tM3

11)�u
∗∗
1 = R1 (20)

which is second-order accurate in time.

Boundary conditions and initial conditions

The free surface is assumed to be a shear-free interface. That is, the following rigid-lid condition
is imposed on the free surface:

w=0 (21a)

�u
�z

= �v

�z
=0 (21b)

where Equation (21a) represents the zero deformation condition and Equation (21b) denotes the
absence of shear stresses. This condition is reasonable when the Froude number is small or the
wave effect is weak. At the bottom and at the sidewalls, the following no-slip condition is imposed:

u=v=w=0 (22)

Periodic conditions are prescribed at both downstream and upstream boundaries. The initial condi-
tions for the simulated flow are obtained from the velocity and pressure fields in the preceding
simulation.

Applications

The Navier–Stokes equations are solved numerically in a channel of 2�H×H×H in the stream-
wise, transverse, and surface-normal directions, respectively (see Figure 1). The present domain
size for the streamwise direction is sufficient to maintain the longest turbulent structure, as has been
pointed out by Broglia et al. [17]. The mesh properties and flow conditions are given in Table I.
All grid points in the streamwise directions are uniformly distributed, while a non-uniform grid

x, u
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z, w

free surface

wall

L = 2

H = 1

H = 1

x, u
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wall

L = 2
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Figure 1. Schematic diagram.
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Table I. Grid properties used in the DNS.

Grid spacing (in wall units)

ReB Re� # of grids (x, y, and z) �x+ �y+ (min–max) �z+ (min–max)

4160 292 64×96×96 28.67 0.91–5.10 0.91–5.10

is used in both the transverse and surface-normal directions. The following algebraic stretching is
used in the transverse and surface-normal directions [22]:

y j = 1

2
(b−1)

(
a2 j/N −1

a2 j/N−1+1

)
, j =0,1, . . . ,N (23)

where a=(b+1)/(b−1), b=1.1, and N is the number of grids in the wall-normal direction.
In the computation, the maximum increment of time is �tmax=0.001H/u�, and the Courant–
Friedrichs–Lewy (CFL) number is fixed at unity. Mean and the second-order statistics are obtained
by averaging the flow fields in time until a statistically steady state is reached.

DNS RESULTS AND DISCUSSIONS

Mean flow properties and turbulence structures

Figure 2 shows the time-averaged velocity field. In the figure, the contour map of the mean
streamwise velocity (U ) is presented together with the velocity vectors (V,W ) for the secondary
flows. All velocity components are normalized by the bulk streamwise velocity (UB). In the contour
map, the location of the maximum streamwise velocity occurs, not at the free surface, but below
the free surface (z/H ≈0.8). This is the so-called velocity-dip phenomenon, which is unique to
turbulent open-channel flows [23].

In the half plane of the figure, two pairs of counter-rotating vortices can be seen at both the
upper and lower parts of the channel section. Near the lower corner, a pair of counter-rotating
secondary flows is observed, which are nearly symmetric along the corner bisector. These bottom
secondary flows are similar to those observed in turbulent square duct flows by Gavrilakis [11],
Huser and Biringen [14], and Joung et al. [24]. Near the upper corner, another pair of counter-
rotating vortices is observed. However, the upper secondary flows are no longer symmetric because
of the free surface. It can be seen that the maximum magnitude of the secondary flow vectors is
about 3% of the bulk streamwise velocity and the point of maximum secondary flow vector is
located at y/H ≈0.26 and z/H ≈1.0. This conforms to previous findings reported by Nezu and
Rodi [2], Tominaga et al. [3], Naot and Rodi [4], Cokljat and Younis [5], Shi et al. [6] and Shiono
and Feng [7]. Note also the small vortex near the upper corner. Grega et al. [25] first defined
this small vortex as inner secondary flows to distinguish them from the outer secondary flows, the
larger vortex. The size of the inner secondary flows and their magnitude are seen to be smaller
than those of the outer secondary flows.

The streamlines of the secondary flows are plotted in Figure 3. These data show that the
range of the inner secondary flows is narrower than the range of the outer secondary flows.
According to Grega et al. [25], the size of the inner secondary flows is about 100 in wall units, i.e.
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Figure 2. Time-averaged velocity field.

y+=u�y/�≈100. This means that the size of the inner secondary flows is inversely proportional
to the shear velocity or Reynolds number. In the present DNS, the division of inner and outer
secondary flows at the free surface is about 40 in wall units. In the LES data reported by Broglia
et al. [17], the locations of the division from their three simulation results are about y+ ≈40,
which is the same as the present result.

In Figure 4, the mean streamwise velocity along the middle plane by the present DNS is
compared with LES data by Broglia et al. [17] and measured data by Nezu and Rodi [26]. The
log-law equations by Nezu and Rodi [26] from the best fit of their measured data are also plotted in
the figure. Compared with the log-law, however, it can be seen that both profiles by the present DNS
and by LES data by Broglia et al. [17] overshoot the mean streamwise velocity in the logarithmic
layer below the free surface. Huser and Biringen [14] attributed this to strong turbulence production
in that region. In the profiles by the present DNS and the LES data by Broglia et al. [17], a drop
in the mean streamwise velocity near the free surface is also observed. On the whole, the origin
of the discrepancy between the simulated results and the experimental data is the difference in the
width-to-depth ratio. The width-to-depth ratio of the channel in the present DNS and the LES by
Broglia et al. [17] is unity, whereas the ratio in the experiments of Nezu and Rodi [26] is 6.

Figure 5 shows the distribution of shear velocity normalized by its average value along the
perimeter. In the figure, the computed results are compared with data reported by Nezu and Rodi [2].
The bulk Reynolds number of the flow in Nezu and Rodi [2] is 48 500, and the width-to-depth ratio
of their channel is 2. It can be seen that the measured shear velocity increases more rapidly with
distance from the corner than that in the present DNS. This conforms to Huser and Biringen [14]
in that the increasing rate of the shear velocity near the wall is greater for flows with a higher
Reynolds number. After a rapid increase, the shear velocity is observed to be relatively uniform.
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Figure 3. Streamlines for secondary flows.
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The vertical distribution of the shear velocity along the sidewall is given in Figure 6, where
the DNS results are compared with the LES data of Broglia et al. [17] and the measured data of
Nezu and Rodi [2]. Both profiles by DNS and LES are seen to be quite similar over the depth but
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an increase in shear velocity near the free surface is not seen in the measured data. According to
Broglia et al. [17], the inner secondary flows transfer high-momentum fluids from the free surface
toward the upper corner. This is directly reflected by the shear velocity, i.e. the peak value occurs
at the free surface. However, this is not observed in the data reported by Nezu and Rodi [2]. This is
because the shear velocity was estimated by fitting the measured mean velocity data to the log-law
for a canonical turbulent flow. In the region where the secondary flows significantly affect flow,
the mean velocity profile can be considerably different from the standard logarithmic law [17].
This explains why the shear velocity determined from measured data does not show a peak near
the free surface.

The contour map of the mean streamwise vorticity (�x =�V/�z−�W/�y) is shown in Figure 7.
In the figure, the positive and negative vorticities are denoted by solid and dashed contour lines,
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Figure 7. Distribution of mean streamwise vorticity.

respectively. Since the inner secondary flows are rotating in the counter-clockwise direction, the
vorticity is negative, as can be seen in the figure. In the lower corner region, the general pattern
of the vorticity is similar to that of square duct flows reported by Gavrilakis [11]. However, in
the upper corner region, the free surface makes the vortical structure more complicated due to the
presence of the inner and outer secondary flows.

Three components of turbulence intensity at the middle plane are shown in Figure 8. The
computed results are compared with measured data by Nezu and Rodi [26] and LES data near
the free surface by Broglia et al. [17]. It can be seen that the computed turbulence intensities
near the free surface are in good agreement with the LES data of Broglia et al. [17]. However,
turbulence intensities from the present DNS are slightly different from the profiles measured by
Nezu and Rodi [26]. In the case of x-component turbulence intensity, it appears that the peak value
for the measured urms is larger and the point of the measured peak is closer to the wall than the
corresponding simulated data. Moser et al. [27], who observed the same trend, attributed this to
the high Reynolds number of the flow.

Also note that the turbulence intensities show a strong anisotropy near the bottom and free
surface. Near the bottom, urms appears to be dominant over the other two components. On the
other hand, both urms and vrms increase near the free surface and the rate of increase of vrms is
slightly steeper than that of urms. This is consistent with Nagaosa’s [16] statement that the transfer
of turbulence kinetic energy between the surface-normal and transverse direction is stronger than
that between the surface-normal and the streamwise direction.
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Figure 9 shows contour plots of Reynolds stresses normalized by u2� . In the figure, the positive
and negative values are denoted by solid and dashed lines, respectively. It can be seen that the
distributions of all Reynolds stress components in the region away from the free surface are similar
to those for square duct flows reported by Huser and Biringen [14] and Joung et al. [24]. However,
near the free surface, the distributions are different due to the free surface effect. Also, it turns out
that the pattern of Reynolds stress components is in good agreement with LES data reported by
Broglia et al. [17].

Figure 10 presents the surface-normal distributions for Reynolds shear stress estimated at three
planes (y/H =0.054,0.236, and 0.5) using the DNS data. Joung et al. [24] carried out a DNS
of turbulent flow in a square duct. Using the conditional quadrant analysis of the DNS data, they
concluded that the patterns of the secondary flows are determined by the directional tendency of
coherent structures. Huser and Biringen [14] also demonstrated the mechanism by which secondary
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Figure 9. Contour maps of Reynolds stresses: (a) u′2; (b) u′v′; (c) u′w′; (d) v′2; (e) w′2; and (f ) v′w′.

flows are generated by connecting coherent structures to the production of Reynolds shear stresses.
In the present study, the surface-normal distributions of the Reynolds shear stress are analyzed in
relation to the coherent structures.

Figure 10(a) shows the surface-normal distributions for the Reynolds stress component u′v′.
At the middle plane, the value is zero due to symmetry. At the plane y/H =0.236, u′v′ is
positive, which is related to the bottom vortex toward the center of the channel. It then decreases
continuously up to z/H =0.7, and abruptly increases. Thereafter, u′v′ falls in the free surface
region showing a minimum value. This is related to the generation of the outer secondary flows,
which transfer low-momentum fluids near the wall toward the center of the channel. Overall, u′v′
at y/H =0.236 is negative except for the region close to the bottom. At the plane close to the wall
(y/H =0.054), u′v′ has a negative value over the entire region. As a result it can be expected that
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Figure 10. Surface-normal distribution of Reynolds shear stress: (a) u′v′; (b) u′w′; and (c) v′w′.
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sweeps or ejections of coherent structures are dominant near the sidewall. u′v′ at y/H =0.054
decreases continuously up to z/H =0.85. Thereafter, u′v′ abruptly increases, and it then decreases
slightly in the free surface region. The decrease in u′v′ near the free surface is related to the inner
secondary flows, which convect high-momentum fluids near the free surface toward the sidewall.
The rate of decrease of u′v′ at y/H =0.054 in the free surface region appears to be less than that
at y/H =0.236. The difference in the rate of decrease near the free surface can be explained by
the fact that the outer secondary flows are stronger than the inner secondary flows. That is, as
shown in Figure 2, the region y/H =0.054 corresponds to the cell of the inner secondary flows,
while the region y/H =0.236 corresponds to the cell of the outer secondary flows.

The surface-normal distributions of the Reynolds stress component u′w′ are given in
Figure 10(b). Both profiles at the planes y/H =0.236 and 0.5 show a negative Reynolds stress
in the region close to the bottom. It is known that the Reynolds stress component u′w′ changes
linearly at the middle plane, which is not exactly true, based on the present DNS data. This
seems to be the result of a sidewall effect due to the low Reynolds number of the flow. At the
plane y/H =0.054, the Reynolds stress component is nearly positive for z/H<0.6. The positive
Reynolds stress occurs in the region where clockwise-rotating vortices are created (see Figure 2).
It would be expected that upward sweeps (u′>0,v′<0, and w′>0) and downward ejections
(u′<0, v′>0, and w′<0) resulting in a positive u′w′ at y/H=0.054 are dominant for this region.
u′w′ at y/H=0.054 is negative near the free surface, i.e. z/H<0.8, the origin of which appears
to be dominant downward sweeps (u′>0,v′<0, and w′<0) and upward ejections (u′<0, v′>0,
and w′>0) creating a negative u′w′.

Figure 10(c) shows the surface-normal distributions for the Reynolds stress component v′w′.
It appears that the Reynolds stress component is zero due to symmetry at the middle plane. At
the plane y/H =0.236, the Reynolds stress is negative and positive for z/H<0.6 and z/H>0.6,
respectively. At the plane y/H =0.054, the Reynolds stress component shows the negative peak
near the bottom but a positive value near the free surface. The absolute values of these peaks are
observed to be larger than those at the plane y/H =0.236. Near the sidewall, it is likely that the
negative peak near the bottom is the result of upward sweeps and downward ejections, which take
place consecutively with distance from the bottom. Similarly, near the free surface, downward
sweeps and upward ejections would be expected, which occur consecutively with the distance
from the free surface, thus resulting in a positive peak.

In summary, sweeps and ejections of coherent structures are dominant near the sidewall
(Figure 10(a)). Based on the distributions of u′w′ and v′w′ (Figures 10(b) and (c)), upward sweeps
and downward ejections are dominant near the bottom and downward sweeps and upward ejections
are dominant near the free surface. In the following, an attempt was made to relate the results
obtained herein to the dominant coherent structures and secondary flow patterns using the quadrant
analysis.

Instantaneous flow field

Figure 11 shows the time variations of the instantaneous streamwise velocity contour and velocity
vectors (v, w) at a cross section at x/L=0.5. Herein, comparisons are made with the instanta-
neous flow fields of the turbulent square duct flow at the same passing time and space in Joung
et al. [24]. Joung et al. [24] found that mushroom-shaped flow structures near all the walls of the
square duct are generated or disappear with time and they are related to counter-rotating vortices.
Figure 11 reveals that the instantaneous flow structures from the present DNS are different from
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those in the square duct flow near the free surface. That is, the mushroom-shaped flow structures
are not generated but only dissipated near the free surface. However, near the boundaries except
the free surface, the flow structures are generated and disappear, similar to the square duct flow.
In addition, it appears that at the free surface, contour lines of the streamwise velocity are normal
to the free surface and surface-normal velocity component is zero (w=0), due to the shear-free
interface condition imposed in the present DNS.

Quadrant analysis

In the previous discussions, it was shown that the secondary flows are generated near the upper and
lower corners of the channel and these affect the mean flows and turbulence structures. Secondary
flows are found to be related to the production of Reynolds shear stresses, which is now affected
by the dominant coherent structures that are generated near the wall. Herein, an attempt is made
to demonstrate the generating mechanisms of secondary flows by investigating the productions of
Reynolds shear stress due to dominant coherent structures. In the following discussions, at the

y/Hy/H

y/Hy/H

z/
H

z/
H

0.00
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

(a)

(b)

z/
H

z/
H

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Figure 11. Time variations of instantaneous velocity fields (left: streamwise velocity u and right: velocity
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Figure 11. Continued.

left-hand sidewall of the channel, ejections (Q2 event) with a negative u′ and positive v′ denote
bursting phenomena in which the low-momentum fluid at the wall is ejected into the high-speed
flow. On the contrary, sweeps (Q4 event) with a positive u′ and negative v′ are associated with the
invasion of a high-momentum fluid toward the wall.

In Figure 12, the contributions of each event to the production of primary Reynolds shear stress
(u′v′) near the sidewall (y/H =0.054 or y+ ≈14) are presented. It can be seen in this figure that
u′v′ is negative for almost the entire height of the sidewall. This is because the contributions by
sweeps and ejections are larger than those by Q1 and Q3 events. Near the bottom, sweeps are
dominant for z/H<0.15. This is related to the inrush of secondary flows toward the lower corner of
the channel. It can also be seen that sweeps are dominant near the free surface, i.e. for z/H>0.95.
This region corresponds to the upper part of the inner secondary flows toward the sidewall. In the
remaining region, the production of Reynolds stress by ejections is larger than those by sweeps,
which is related to the generation of the secondary flows ejecting toward the center of the channel.

In order to investigate the relationships between the production of Reynolds shear stress (u′v′)
and the directional tendency of dominant coherent structures, a conditional quadrant analysis
was performed. The conditional quadrant analysis is the additional consideration of the sign of
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Figure 13. Definition of directional tendency of coherent structures generated near the sidewall.

w′ at the points where the sweep and ejection events are dominant in the production of u′v′.
In Figure 13, sweeps and ejections in the conditional quadrant analysis are classified by their
directional tendency in the transverse direction. Figure 14 shows the results near the sidewall
(y+ ≈14). It can be seen in the figure that upward sweeps and downward ejections are dominant
for z/H<0.15 and for 0.15<z/H<0.4, respectively. This leads to a positive u′w′ and negative
v′w′ in the respective regions. However, production by upward ejections and downward sweeps
is largest for 0.8<z/H<0.95 and for z/H>0.95, respectively. This results in negative u′w′ and
positive v′w′ values in the respective regions. From the foregoing results, it appears that the
production of Reynolds shear stress is determined by the directional tendency of the dominant
coherent structures.
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However, the direction of flow in the secondary flows in Figure 2 is contrary to the results
obtained by the present conditional quadrant analysis using w′, i.e. ejections are heading in the
opposite direction. This might be caused by the use of the fluctuating component w′ instead of
the instantaneous component w.

A similar conditional quadrant analysis using w was performed to see the relationship between
the directional tendency of dominant coherent structures and the patterns of mean secondary flows.
Figure 15 shows the production of Reynolds shear stress (u′v′) by primary events near the sidewall
(y+ ≈14). It can be seen in the figure that the sum of the production of Reynolds shear stress
by downward sweeps and downward ejections is similar to the sum of the upward sweeps and
upward ejections for z/H<0.08. This implies that the generation of the secondary flows without
directional tendency near the bottom. This can also be confirmed in Figure 2. For 0.08<z/H<0.7,
the production of u′v′ by upward coherent structures is larger than that by downward coherent
structures, which leads to the generation of upward secondary flows in this region. It can also
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be seen that the downward and upward coherent structures are dominant for 0.7<z/H<0.92
and z/H>0.92, respectively. In these regions, the directional tendencies of dominant coherent
structures correspond to the direction of the secondary flows. From the foregoing results, it can be
concluded that the directional tendency of the coherent structures determines the patterns of the
secondary flows.

CONCLUSIONS

This study presented a DNS of turbulent flows in an open-channel with sidewalls. The flow at a
bulk Reynolds number of 4160 was simulated. The width to depth ratio of the channel is unity.
The simulated data for mean flow and turbulence structures were compared with numerical and
experimental data available from the literature. The DNS results were in good agreement with
LES data reported by Broglia et al. [17] but a slight difference with the measured data was found.
This is mainly due to the Reynolds number effect.

In the time-averaged velocity field, a velocity-dip phenomenon was observed, and both inner
and outer secondary flows were observed, as predicted by Broglia et al. [17]. It appeared that the
inner secondary flows significantly affect the shear velocity near the free surface although their
size and magnitude are smaller than those of the outer secondary flows. It was also found that the
mean streamwise velocity overshoots due to strong turbulence production in the logarithmic layer
below the free surface and the turbulence intensity shows a strong anisotropy near the bottom and
free surface.

Using the DNS data, relationships between Reynolds shear stress, dominant coherent structures,
and the pattern of secondary flows are demonstrated. That is, it was found that the surface-
normal distribution of the Reynolds shear stress components is determined by dominant coherent
structures, which, in turn, create the directional tendency of the secondary flows. Through the
quadrant analysis, it was shown that the production of u′v′ by sweeps and ejections is larger than
those by other events for the entire height near the sidewall, which results in a negative u′v′ near
the sidewall. Sweeps and ejections appeared to be particularly dominant near the regions where
secondary flows rush in toward the sidewall and are ejected from the sidewall, respectively. Through
the conditional quadrant analysis using w′, it was found that the upward sweeps and downward
ejections are dominant in the lower region of the channel, creating negative u′w′ and positive v′w′.
On the other hand, in the upper region, upward ejections and downward sweeps were seen to be
dominant, generating positive u′w′ and negative v′w′. The conditional quadrant analysis using w

resulted in a directional tendency of dominant coherent structures, which precisely corresponds to
the pattern of secondary flows.

NOTATION

The following symbols are used in this paper:

B channel width
H flow depth
L domain size in the x-direction
p pressure
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Re Reynolds number (=U0H/�)
ReB bulk Reynolds number (=UBH/�)
Re� shear Reynolds number (=u�H/�)
U,V,W mean velocity in the x-, y-, and z-directions, respectively
U0 characteristic velocity
UB bulk streamwise velocity
u,v,w instantaneous velocity components
u′,v′,w′ fluctuating components of velocities
ui velocity components in the xi -direction
urms,vrms, wrms turbulence intensities
u+ U/u�
u� shear velocity averaged along the perimeter
u∗ local shear velocity
u′2, u′v′, u′w′, v′2, v′w′, w′2 Reynolds stress components
x, y, z streamwise, transverse, and normal to the bottom

directions, respectively
y+, z+ distance from the wall in wall units
xi Cartesian coordinates
�x+,�y+,�z+ grid spacings in wall units
�i j Kronecker delta
� kinematic viscosity and
�x mean streamwise vorticity
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